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Effectiveness of rf phase modulation for increasing bunch length in electron storage rings

F. Orsini and A. Mosnier
CEA Saclay, Baˆtiment 701, 91191 Gif-sur-Yvette, France

~Received 25 March 1999!

Aiming at increasing the apparent bunch length and hence the beam lifetime in electron storage rings, rf
phase modulation near one parametric resonance has been experimentally investigated. Since the possible
benefit of this technique depends greatly on the ring parameters, we studied the effect of such a modulation for
different rf parameters on the longitudinal emittance. Theoretical predictions and results of simulations are
compared and discussed. It is shown that synchrotron radiation tends to spoil the parametric resonance. In
particular, a criterion for island survival has been found.

PACS number~s!: 29.20.2c, 29.27.2a, 41.60.2m
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I. INTRODUCTION

In order to reach very high brilliance, synchrotron rad
tion light sources demand intense bunches with very sm
transverse and longitudinal emittances. However, the h
density of electrons increases the Touschek effect (e2,e2

collisions at large angle! and thus reduces the beam lifetim
In order to reduce the electron density, different approac
have been considered: a higher harmonic cavity operatin
the bunch lengthening mode or a rf phase modulation@1#,
which increases the apparent bunch length but also the
ergy spread of the beam. This paper focuses on the se
method, especially near the third-integer resonance, more
propriate than the integer resonance. The latter, widely
plained in previous papers@2#, is too strong to be useful in
storage rings—distinct bunchlets with large spacing
formed—and is briefly discussed in Sec. II. The third-integ
resonance, more promising, can be controlled through
two modulation parameters frequencyvm and amplitude
Am , which must first be properly chosen. Analytical expre
sions for fixed points and island widths are given in Sec.
and help for the optimization of the modulation. For illustr
tion, three synchrotron light sources are compared: BESS
SOLEIL, and SuperACO. Lastly, the combined effect
both synchrotron radiation and parametric resonance is s
ied in Sec. IV. Islands created by rf modulation tend to va
ish as soon as radiation damping is introduced. A criter
that guarantees island formation is then inferred from
Fokker-Planck equation. The validity of the criterion is
nally tested with different parameters of the three machin

II. INTEGER RESONANCE

The integer resonance has been thoroughly analyze
@2#. The particle motion can be characterized by three
gimes according to the value of the modulation tune, w
respect to a bifurcation frequency, given by

vc5vsF12
3

16
~4Am!2/3G ,

with vs the synchrotron frequency andAm the amplitude of
the perturbation of the first harmonic.
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Well below the bifurcation frequencyvc , two stable
fixed points ~SFP’s! define two well separated domain
which particles fill in about the same proportions. Abovevc ,
only the farthest stable fixed point is left and the partic
diffuse toward this off-centered island.

The three regimes of the integer resonance have b
simulated with the parameters of the SOLEIL storage ri
Figure 1 shows, for example, the gathering of particles,
tially uniformly distributed in phase space, into the islan
after a few damping times for different modulation tunes.
soon as the modulation amplitude is large enough so tha
integer resonance takes place, dipole oscillations of la
magnitude are created, whatever the regime. The inte
parametric resonance is definitely not an appropriate met
for decreasing the electron density of the bunch.

III. THIRD-INTEGER RESONANCE

A. Hamiltonian of the third-integer resonance: vmÉ3vs

Only the main results are recalled hereafter and deta
derivations can be found in the Appendix. We conside
phase modulation with frequency close to three times
synchrotron frequency. The complete perturbed Hamilton
as a function of the phasef and the energy deviationd of
one particle, can be written as

H~f,d!5
vs

2
d21vs tanfs@sinf cos~Am sinvmt !

1cosf sin~Am sinvmt !#

2vscosf cos~Am sinvmt !

1vssinf sin~Am sinvmt !2vsf tanfs, ~1!

where vs is the synchrotron frequency and we definefs
5p2fs with fs the synchronous angle.

We examine the Hamiltonian in the coordinate frame,
tating at the modulation frequency, by using the action-an
variables (J̃,c̃) defined as

d52A2J̃ cos~ c̃1vmt/3!, f52A2J̃ sin~ c̃1vm t/3!.
4431 © 2000 The American Physical Society
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FIG. 1. Particles in normalized phase space (f,d) with rf phase modulation at the integer resonance.~a! Well below the bifurcation
frequency;~b! just below the bifurcation frequency;~c! above the bifurcation frequency.
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Expanding into Bessel functions and assuming that we
close to the third-integer parametric resonance, the ti
averaged Hamiltonian, representing the motion invaria
takes the simple form

^K& t5S vs2
vm

3 D J̃2
vsJ̃

2

16
2

vsAm ,~2J̃!3/2

48
cos 3c̃2vs .

~2!

In addition to the first linear term of the third-integer res
nance, the Hamiltonian includes higher order functions oJ̃.
The cosine term provides thec̃ periodicity of 2p/3. The
terms likevs that do not depend onJ̃ andc̃ do not affect the
differential equations and hence can be ignored. In the n
phase space variables (J̃,c̃), the stationary trajectories ar
given by theK-constant contours.

The position and width of the three islands, which det
mine the phase space occupied by the beam, are contr
by the modulation parameters and must be properly adjus

B. Fixed points

The coordinates (fs ,ds) of the three stable fixed point
are ~for c̃50, 2p/3, 4p/3)

ds5
am

2
~11RFP!, 2

am

4
~11RFP!, 2

am

4
~11RFP!,

fs50, A3
am

4
~11RFP!, 2A3

am

4
~11RFP!, ~3!

with the factor RFP

5A11(64Qs
2/am

2 (seha)2)(12vm/3vs), where am is the
normalized modulation amplitude (Am is in units of rms
bunch length!, Qs is the synchrotron tune,se is the natural
energy spread,a is the momentum compaction, andh is the
harmonic number.

The fixed point position depends on ring and rf modu
tion parameters. In order to depopulate the bunch cente
much as possible, islands have to be large enough, on
hand, and be placed close to the bunch core, on the o
hand. However, Eq.~3! shows that the stable fixed points ca
never reach the origin, even for a vanishing distance to
re
e-
t,

w

-
led
d.

-
as
ne
er

e

resonance (vm23 vs), and are bounded by the lower lim
am . Figure 2 illustrates this limit.

C. Island width

The island width is given by the distance between
separatrices, the curves joining the unstable fixed points,
the stable fixed points, where the Hamiltonian is maximu
@3#. The normalized width~in s units! expressed in terms o
storage ring parameters is given by

D ds5616A2

3S Qs

a seh
D 3/2

~12vm/3vs!
3/4

1

AamRFP

.

~4!

TheK-constant contours, calculated for the SOLEIL rin
are shown in Fig. 3. At small amplitude, the motion is almo
unaffected by the resonance. Moving away from the orig
the circles become more and more distorted, until reach
the islands. The expression~4! reveals that the morevm
tends to 3vs , the more the island width is reduced. Th
width is drawn in Fig. 4 as a function of the distance to t
resonance and scales as the power1

4 . There is then a trade

FIG. 2. SOLEIL: Evolution of the amplitudeds of the stable
fixed point versus the third-integer resonance coefficient
2vm/3vs).
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PRE 61 4433EFFECTIVENESS OF rf PHASE MODULATION FOR . . .
off between island position (vm very close to 3vs) and is-
land width (vm not too close to 3vs).

D. Chirikov criterion

The Chirikov criterion@4# is used to estimate the onset
stochastic instability. In particular, chaotic behavior can
cur when islands of two successive parametric resona
are too close and the overlap of resonances begins when
separatrices are in contact. As we will see later, this cha
motion has been observed in some simulations with SOL
parameters.

The Chirikov criterion is given by@4#

FIG. 3. K-constant contours plotted in normalized phase sp
(f,d) for SOLEIL ring parameters~curves surrounding the stabl
fixed points are in solid lines and curves surrounding the unst
fixed points are in dashed lines!.
-
es
eir
ic
L

D J̃11D J̃2!d J̃, ~5!

whereD J̃1 andD J̃2 are the island widths of the third-intege
and fifth-integer resonances, respectively, andd J̃ is the is-
land spacing in amplitude.

In the case of rf phase modulation, and possible inter
tion between the third- and fifth- integer resonances, the
terion becomes

S Am

6 D 1/2S 12
vm

3 vs
D 3/4

!
Dvs

vs
,

with Dvs /vs51/6m2 and m53 for the third-integer reso-
nance.

Expressed in terms of the normalized modulation am
tude, the condition on the modulation tune for nonchao
behavior can be written as

FIG. 4. D ds in s units versus the modulation frequency coe
ficient (12vm/3vs).

e

le
ints
FIG. 5. Single bunch tracking in normalized phase space (fs ,ds). Dark points represent the third-integer resonance effect, gray po
represent the fifth-integer resonance effect.
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TABLE I. Synchrotron light sources’ main parameters.

SOLEIL BESSY I SuperACO

Frequency~MHz! 352.2 499.2 100.0
Harmonic number 396 104 24
Momentum compaction 4.7731024 1.531022 1.4831022

Nominal energy~MeV! 2500 800 800
Energy loss/turn~keV! 800 20 21.3
Total rf voltage~MV ! 3.8 0.2 0.17
Longitudinal damping time~ms! 4.33 10.0 8.5
Natural energy spread 9.2431024 5.031024 5.531024

Bunchlength/wavelength,sL /lRF(%) 2 7.9 4.5
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@3H 12F 1

54S 6vs

vRFa seam
D 1/2G4/3J . ~6!

Figure 5 reproduces two numerical simulations
SOLEIL ~chaotic behavior! and BESSY I~nonchaotic behav-
ior!. In nonchaotic behavior, the fifth-integer resonance
islands very far from the third-integer one, more than 1s
@Fig. 5~b!# with widths small in comparison to the islan
spacing. The particles are then independently governed
each resonance. Conversely, the fifth-integer islands hit
separatrices of the third-integer islands in the case of cha
behavior@Fig. 5~a!#. The particles can then diffuse from on
resonance to the next, leading to particle loss.

E. Optimization of the rf phase modulation parameters

The modulation parameters, frequencyvm and amplitude
Am , have first been optimized with the help of the analytic
expressions~3! and ~4!, together with different storage rin
parameters@5#. Table I summarizes the relevant paramet
used for three light sources: SOLEIL, BESSY I, and S
perACO.

Both the parameters, amplitudeAm and frequencyvm of
rf phase modulation, are given in Table II after optimizatio
The corresponding stationary trajectories are plotted in F
6. It is worth noting that theam value is moderate for pre
venting any coherent motion of the whole bunch and that
fixed points are close enough to the bunch core, while ke
ing a sufficient island width.

When the bunch is short compared to the rf waveleng
especially for SOLEIL, the modulation frequency has to
moved very close to 3vs in order to draw the fixed points to
the origin. With these optimized parameters, we note t
particles initially located at 1s will be drawn out up to
r
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nearly 3s for the three machines. A significant bunch lengt
ening is therefore expected.

IV. SYNCHROTRON RADIATION EFFECT

In the previous analytical treatment, the synchrotron
diation effect, including radiation damping and quantum e
citation, has not been taken into account. However, this
fect cannot be neglected in storage rings, where these te
can be as large as the parametric resonance terms.

A. Fokker-Planck treatment

Due to the dissipative nature of the system, the previ
Hamiltonian treatment cannot be directly applied in the pr
ence of synchrotron radiation. The present analysis is ba
on the Vlasov equation with the Fokker-Planck collisio
term,

] F

]t
1$H,F%5R, ~7!

where F(f,d,t) is the distribution function of particles in
the bunch,R5(]/]d)(gdFd1k]F/]d) is the collision term
describing the synchrotron radiation effect, and$•••% de-
notes the Poisson bracket term.gd51/Trad is the radiation
damping rate andk is the quantic diffusion factor, related t
gd by se5Ak/gd.

With the help of the four partial derivatives

] J̃

]d
52A2J̃ cosc̃,

] J̃

]f
52A2J̃ sinc̃,
each
TABLE II. Final optimization of the rf phase modulation parameters and island characteristics for
machine.

SOLEIL BESSY I SuperACO

vm /vs 2.9995 2.9850 2.9950
Am ~deg! 1.48 5.68 3.24
SFP coordinates (0,12.54) (0,13.39) (0,13.43)
(fs ,ds) (12.20,21.27) (12.94,21.69) (12.97,21.71)

(22.20,21.27) (22.94,21.69) (22.97,21.71)
Island width (s units! 2.29 2.71 2.77
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FIG. 6. Separatrices andK-constant contours in normalized phase space (fs ,ds) with rf phase modulation of the third integer.~a!
SOLEIL; ~b! BESSY I; ~c! SuperACO.
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]c̃

]d
52

sinc̃

A2J̃
,

]c̃

]f
52

cosc̃

A2J̃
,

the new Fokker-Planck equation, in terms of (J̃,c̃) variables,
is

]F

]t
1

]F

]c̃

]K

] J̃
2

]F

] J̃

]K

]c̃
52

]

] J̃
S gdJ̃F1k J̃

]F

] J̃
D ~8!

whereK is the perturbed Hamiltonian. ReplacingK in Eq.
~8! by its expression in (J̃,c̃) variables, and as this equatio
has now a stationary solution (] F/] t50), then the problem
is reduced to

]F

]c̃
S ~vs2vm/3!2

vsJ̃

8
2

vsAm cos 3c̃

16
~2J̃!1/2D

52k J̃
]2F

] J̃2
1

]F

] J̃
S vsAm~2J̃!3/2

16
sin 3c̃12gdJ̃12k D

12gdF. ~9!

We are interested in the part that contains the]/] J̃ de-
rivatives. The separation needs to fix the variablec̃5c̃1 in
the rotating frame, and using factorization@F( J̃,c̃)5g(c̃)
3 h( J̃)#, the equation can be written as

a~ J̃!
]2h

] J̃2
1b~ J̃!

]h

] J̃
1c~ J̃!h50, ~10!

where

a~ J̃!52k J̃,

b~ J̃!52FvsAm~2J̃!3/2

32
sin 3c̃11gdJ̃1kG ,

c~ J̃!52 gd .
If the amplitude of the third-integer modulation is equal
zero, we find the well-known Haissinski steady state so
tion, whereh describes a Gaussian bunch:

h~ J̃!5
gd

k
e2(gd /k) J̃ or h~f,d!5

gd

k
e2(gd /k)[(f21d2)/2].

Finally, the bunch shape, given by the distributionh( J̃), will
get the form:A( J̃)e2b( J̃)/a( J̃) @whereA( J̃) is an amplitude
term coming from the solution of Eq.~10!#.

The relevant termb( J̃), which contains the third-intege
resonance perturbation with the synchrotron radiation eff
will determine the bunch Gaussian shape or the shape m
lated by island formation. Thus the rf phase modulation
still efficient if the magnitude of the first coefficient is large
than the two last coefficients.

B. Island formation criterion

The three coefficients of the bracketed term ofb( J̃) are

C15
vsAm~2J̃!3/2

32
sin 3c̃1 , C25gd J̃, C35k.

TheC3 term, generally much smaller thanC1 andC2, can be
neglected for phase space only.

When the modulation parameters are optimized to ca
the particles located in the bunch core (1s), it is particularly
interesting to estimate if the particles are attracted into
islands or if they remain near the origin. With physical pha
space variables (f,d), and the assumption that 1s particles
are treated, then the coefficients can be written as

C15
vsAm

16 S ah se

Qs
D 3

, C25
1

Trad
S ah se

Qs
D 2

.

Expressing the perturbation amplitudeAm in s units of the
bunch, i.e.,Am5amsf , wheream is an integer, we find a
limit value of the radiation damping time for the formatio
of islands:

Trad.
16Qs

vRFa2ham

1

se
2

. ~11!
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FIG. 7. Snapshots (105 particles! in normalized phase space (fs ,ds) with island destruction~left! and island formation~right! for
SOLEIL. ~a! SOLEIL: natural value ofse59.2431024. ~b! SOLEIL: se515.031023 modified for island formation in agreement with th
criterion limit.
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Whenever the radiation damping time is larger, thir
integer resonance dominates and islands will be formed.

C. Simulations of formation or destruction of islands

The validity of the island survival criterion has bee
checked for various parameters of the three specified pr
ously machines with the help of a multiparticle trackin
code, which simulates the motion of particles with rf pha
modulation, synchrotron radiation, and quantum excitati
The simulation is based on the following recursive eq
tions:

fn115fn12pQsdn ,
ere
ral
-

i-

e
.
-

dn115S 12
2

TradF0
D dn1

2

ATradF0

seRI

2
2pQs

cosf̄s

@sin~f̄s1fn111Am sinvmt !2sinfs#,

~12!

whereRI is a random number of normal distribution andF0
the revolution frequency.

For each calculation, the rf phase modulation parame
(vm ,am) have first been optimized to get well-shaped
lands. Furthermore, in order to shorten the simulation ti
for the criterion checking, it is preferable to use the ene
spread parameterse instead ofTrad . Thus the criterion is
now written asse.A(1/Trad)(16Qs /vRFa2ham).

For each machine, island formation and destruction w
looked for by using two values of energy spread: the natu
FIG. 8. Snapshots (105 particles! in normalized phase space (fs ,ds) with island destruction~left! and island formation~right! for
BESSY I. ~a! BESSY I:se52.331024 modified for island destruction in agreement with the criterion limit.~b! BESSY I: natural value of
se55.031024.
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FIG. 9. Snapshots (105 particles! in normalized phase space (fs ,ds) with island destruction~left! and island formation~right! for
SuperACO. SuperACO: natural value ofse55.531024 for a bunch current equal to zero; there is island destruction in agreement wit
criterion limit. ~b! SuperACO: natural value ofse518.3331024 for a bunch current equal to 60 mA; there is island formation in agreem
with the criterion limit.
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one and a fictive one, giving the reverse situation. Figure
8, and 9 give the particle distribution in phase space, sh
ing the island destruction for SOLEIL@Fig. 7~a!# and Su-
perACO @Fig. 9~a!#, and the island formation for BESSY
@Fig. 8~b!# with their natural energy spread. Table III sum
marizes the energy spread values, which were tested, as
as the limit value~natural energy spreads are in bold char
ters!. The energy spread of SuperACO, that was chosen
island creation, is larger than the natural one, but co
sponds nevertheless to a real situation, when the beam
rent is well above the turbulent regime.

It is worth noting that the required energy spread for
land formation is much higher for the SOLEIL ring than f
the other ones, due mainly to the low value of the mom
tum compaction. In addition, by assuming an energy spr
larger than the limit value, chaotic motion and particle lo
can be observed in Fig. 7, as predicted by the Chirikov
terion ~cf. Table III!.

Finally, Fig. 10 shows the enlarged charge distributions
different times, as well as the initial Gaussian distribution
comparison. Except for SOLEIL, the net bunch length h
been increased by a factor between 2 and 3, but at the
pense of a similar widening in energy spread, since isla
are rotating in phase space at the modulation frequencyvm .

V. CONCLUSION

With properly chosen parameters, the rf phase modula
method allows enlargement of the phase space occupie
7,
-

ell
-
or
-

ur-

-

-
d

s
i-

t
r
s
x-
s

n
by

the beam. However, the energy spread is also increased
the same bunch lengthening factor. The Touschek lifeti
can then be increased by a factor of 2, as has been obse
in BESSY I and ASTRID@6#, but at the expense of beam
quality, affecting in particular the brilliance in synchrotro
light sources. In addition, the synchrotron radiation effe
can prevent island formation in some cases, which can
predicted by a criterion on the minimum required ener
spread.

APPENDIX

The properties of the Hamiltonian for synchrotron moti
with rf phase modulation are discussed. The longitudi
phase space will be transformed to action-angle coordina
where the Hamiltonian in the rotating frame will be derive
We explain why odd resonances only are considered and
complete perturbed Hamiltonian is calculated. Fixed po
coordinates and island widths are derived in both fram
(f,d) and (J̃,c̃).

1. The action-angle variables of the perturbed
Hamiltonian „rf phase modulation with amplitude Am and

frequency vm…

df

dt
5vs3d,

dd

dt
52

vs

cosfs

@sin~fs1f1Am sinvmt !2sinfs#.
TABLE III. se parameter of island formation or island absence due to the strong damping force.

SOLEIL BESSY I SuperACO

se l im 11.1331023 4.1431024 14.0231024

Island formation se515.031023 seÄ5.0Ã10À4 se518.3331024

vm chaos/vm modul 1.05 0.93 0.96
No island seÄ9.24Ã10À4 se52.331024 seÄ5.5Ã10À4

vm chaos/vm modul 0.81 0.89 0.89
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FIG. 10. Distribution in charge versus the normalized anglefs of a bunch of 100 000 particles in situations where islands are form
~a! SOLEIL: se modified.~b! Bessy I.~c! SuperACO.
tes

ed
il-
The complete perturbed Hamiltonian in (f,d) variables is
given by

H1~f,d!5
vs

2
d21vs tanfs@sinf cos~Am sinvmt !

1cosf sin~Am sinvmt !#

2vs cosf cos~Am sinvmt !

1vs sinf sin~Am sinvmt !2vsf tanfs.

~A1!
i
ce

.

nc
a

The first canonical tranformation in action-angle coordina
(J,c) gives the new Hamiltonian

H1~J,c!5vsJ sinc21vs tanfs$sin@A2J cosc

1Am sin~vmt !#%2vs@cos~A2J cosc

1Am sinvmt !#2vs tanfs~A2J cosc!.

~A2!

The perturbed Hamiltonian is much more complicat
and the perturbed part is not clearly defined. The Ham
tonian expanded into Bessel functions is written as
H1~J,c!5vsJ sinc22vsJo~A2J!22vs(
k51

`

~21!kJ2k~A2J!cos~2kc!2vs tanfsA2J cosc

1vs tanfs Am sin~vmt !Jo~A2J!12vs tanfs(
k50

`

~21!kJ2k11~A2J!cos@~2k11!c#

1vsAm(
k50

`

~21!kJ2k11~A2J!$sin@vmt6~2k11!c#odd resonances%1vs tanfsAm

3 (
k51

`

~21!kJ2k~A2J!@sin~vmt6 2kc!even resonances#.
ion
pen-
for
All resonances appear: the odd resonances sin@vmt2(2k
11)c# and the even resonances sin(vmt22kc) ~terms with
plus signs are nonresonant terms!. All the terms containing
tanfs are neglected in the following, because generally
storage rings bunches are placed for the maximum rf ac
tance, so the synchronous phasefs→0. For this reason even
resonances can be neglected compared to the odd ones

2. Study of the third-integer resonance:vmÉ3vs

Assuming that we are close to the third-integer resona
(k51) and that all nonresonant terms in the Hamiltonian c
be neglected, then the Hamiltonian becomes
n
p-

e
n

H1~J,c!5vsJ2
vsJ

2

16
2vs2

vsJ

2
cos 2c22vs

3 (
k51

`

~21!kJ2k~A2J!cos~2kc!

2vsAmJ3~A2J!sin~vmt23c!.

H1 is time dependent again. A new canonical transformat
to a rotating system in phase space eliminates this de
dence. A generating function of the second type is used
the new transformation:
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F2~ J̃,c̃ !5S c2
vmt

3
2

p

2 D J̃

with J̃5J and c̃5c2vmt/32p/2.
The new HamiltonianK is independent of time; thus it i

a constant of motion:

K5H11
]F2

]t
5H11S 2

vm

3 D J̃.

In the rotating frame, the particle trajectories are descri
by the total time-averaged HamiltonianK:

^K& t5S vs2
vm

3 D J̃2
vsJ̃

2

16
2

vsAm~2J̃!3/2

48
cos 3c̃2vs .

~A3!

Terms in the Hamiltonian that are not functions ofJ̃ and c̃

do not affect the differential equations forJ̃ and c̃ and thus
can be ignored in the following (vs is also neglected!.

3. Fixed point calculation

These fixed points are obtained by the following con
tions:

dJ̃

dt
52

]K

]c̃
50,

dc̃

dt
5

]K

] J̃
50. ~A4!

With both equations, six fixed points are found for which t
sign of cos 3c̃ determines their stability or the instability:~1!

Three stable fixed points~SFPs! for c̃50, 2p/3, 4p/3. They
are stable because the term cos 3c̃ is positive and the poten
tial has a minimum.~2! Three unstable fixed points~UFPs!
for c̃5p/3, p, 5p/3. They are unstable because the te
cos 3c̃ is negative and the potential has a maximum.

The trajectories surrounding the stable fixed points
closed and form islands of stability for particles, whereas
trajectories surrounding the UFPs are hyperbolic and th
curves are separatrices, which are the boundaries of
stable islands. In the new phase space (J̃,c̃), the stationary
trajectories correspond to theK-constant contours.

The coordinates (fs ,ds) of the three stable fixed point
are ~for c̃50, 2p/3, 4p/3)

ds5
am

2
~11RFP!, 2

am

4
~11RFP!, 2

am

4
~11RFP!,

fs50, A3
am

4
~11RFP!, 2A3

am

4
~11RFP!.

~A5!

The coordinates (fs ,ds) of the three unstable fixed
points are
d

-

e
e
se
he

ds52
am

2
~12RFP!, 2

am

4
~12RFP!, 2

am

4
~12RFP!,

fs50, A3
am

4
~12RFP!, 2A3

am

4
~12RFP!,

~A6!

with the factor RFP

5A11(64Qs
2/am

2 (seha)2)(12vm/3vs), where am is the
normalized modulation amplitude (Am is in units of rms
bunch length!, Qs is the synchrotron tune,se is the natural
energy spread,a is the momentum compaction, andh is the
harmonic number. Whenvm tends to 3vs , the UFP coordi-
nates are canceled.

4. Island width calculation

The boundaries of the stable islands are formed by cur
joining the unstable fixed points. AsK is a constant of the
curve, we can writeK( J̃,c̃)5K( J̃UFP ,c̃UFP) whereJ̃UFP is
the action at the unstable fixed points; also on the separa
we find

~ J̃2 J̃UFP!2.
Am@16~12vm/3vs!#

3/2~11cos 3c̃ !

3
.

~A7!

The island widthD J̃ is given by the distance between th
separatrix and the stable fixed points, where the Hamilton
is maximum@3#:

D J̃568AAm2~12vm/3vs!
3/2

3
.

For the easiest stable fixed point, wherec̃50, and with a
change in variable,D J̃5( J̃SFP2 J̃UFP)5(dSFP

2 2dUFP
2 )/2

and dSFP
2 2dUFP

2 5(dSFP2dUFP)(dSFP1dUFP)5Dd(dSFP

1dUFP), then the island width in phase space coordinate

Dd5616AAm2~12vm/3vs!
3/2

3

1

dSFP1dUFP
.

The island width, normalized ins units and expressed
with storage ring parameters, is

Dds5616A2

3
S Qs

aseh
D 3/2

~12vm/3vs!
3/4

1

AamRFP

.

~A8!

Generally, (64Qs
2/am

2 (seha)2)(12vm/3vs)@1, thus we
can approximate Eq.~A8!, so we obtain

Dds.62A2

3S Qs

aseh
D 1/2

~12vm/3vs!
1/4Aam. ~A9!

The island width grows witham , but it is reduced whenvm
tends to 3vs @Dds}(12vm/3vs)

1/4#.
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